Quality Estimation Of Machine Translation Outputs Through Stemming
نویسندگان
چکیده
Machine Translation is the challenging problem for Indian languages. Every day we can see some machine translators being developed , but getting a high quality automatic translation is still a very distant dream . The correct translated sentence for Hindi language is rarely found. In this paper, we are emphasizing on English-Hindi language pair, so in order to preserve the correct MT output we present a ranking system, which employs some machine learning techniques and morphological features. In ranking no human intervention is required. We have also validated our results by comparing it with human ranking.
منابع مشابه
Japanese to English/Chinese/Korean Datasets for Translation Quality Estimation and Automatic Post-Editing
Aiming at facilitating the research on quality estimation (QE) and automatic post-editing (APE) of machine translation (MT) outputs, especially for those among Asian languages, we have created new datasets for Japanese to English, Chinese, and Korean translations. As the source text, actual utterances in Japanese were extracted from the log data of our speech translation service. MT outputs wer...
متن کاملIntegrating Meaning into Quality Evaluation of Machine Translation
Machine translation (MT) quality is evaluated through comparisons between MT outputs and the human translations (HT). Traditionally, this evaluation relies on form related features (e.g. lexicon and syntax) and ignores the transfer of meaning reflected in HT outputs. Instead, we evaluate the quality of MT outputs through meaning related features (e.g. polarity, subjectivity) with two experiment...
متن کاملImproving the quality of Gujarati-Hindi Machine Translation through part-of-speech tagging and stemmer-assisted transliteration
Machine Translation for Indian languages is an emerging research area. Transliteration is one such module that we design while designing a translation system. Transliteration means mapping of source language text into the target language. Simple mapping decreases the efficiency of overall translation system. We propose the use of stemming and part-of-speech tagging for transliteration. The effe...
متن کاملMetrics for Evaluation of Word-level Machine Translation Quality Estimation
The aim of this paper is to investigate suitable evaluation strategies for the task of word-level quality estimation of machine translation. We suggest various metrics to replace F1-score for the “BAD” class, which is currently used as main metric. We compare the metrics’ performance on real system outputs and synthetically generated datasets and suggest a reliable alternative to the F1-BAD sco...
متن کاملAnalysing Quality of English-hindi Machine Translation Engine Outputs Using Baysian Classification
This paper considers the problem for estimating the quality of machine translation outputs which are independent of human intervention and are generally addressed using machine learning techniques.There are various measures through which a machine learns translations quality. Automatic Evaluation metrics produce good co-relation at corpus level but cannot produce the same results at the same se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1407.2694 شماره
صفحات -
تاریخ انتشار 2014